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Air quality forecasting is a vital tool for local health and air managers to make informed decisions
on mitigation measures to reduce public exposure risk. Given a forecast of impending poor air quality,
air quality managers may issue car-pooling advisories, authorize free public transportation or impose
other mitigation and warning measures. Air composition monitoring and exposure records can inform
long-term trends of major air pollutants and their health impacts. Epidemiologists use long term
composition data to understand air pollution related diseases and mortality rates to support public
health policies. This Special Issue highlights the interplay and co-benefit of air quality monitoring
and forecasting.

Public health is under a constant threat by air pollution across the world in various degrees and
manifestations. In China, rapid economic growth has resulted in increased occurrences of poor air
quality. In this special issue, Lu et al. [1] of Wuhan University and Zhou et al. [2] of Chengdu University
respectively studied urban haze and the distribution of multiple pollutants in China. Lyu et al. [3]
of Tsinghua University and Georgia Institute of technology advanced particulate matter forecasts in
China. Zhao et al. [4] of Nanjing University studied the strong response of emission controls during a
recent Youth Olympics event in Nanjing, China.

Ground truth of air constituent concentrations is determined by measurements. Woodall et al. [5]
of the US EPA conducted an intriguing study about hand held air composition measurement devices.
Constantin et al. [6] of the University of Galati, Romania, used an ultralight trike and flux calculations
to measure nitrogen dioxide vertical column density. Bray et al. [7] of North Carolina State University
characterized pollutants emitted from coal-fired power plants in Eastern USA. Baker and Pan [8] of
NOAA’s Air Resources Laboratory, developed a software tool which utilized many in-situ and surface
monitoring network measurements to evaluate forecast model performance. Lightstone et al. [9] of
City College of New York explored neural networks as a means for air quality forecasts. Environmental
and Climate Change Canada’s Munoz-Alpizar et al. [10] studied the impact wildfire pollution on
public health, and Ménard and Deshaies-Jacques [11,12] analyzed chemical data evaluations by
cross-validation statistical analysis.

It is clear that air pollution remains a global problem and that air quality monitoring, forecasting
and mitigation begins as a local effort conducted in concert with global partners. The articles selected
in this Special Issue speak volumes to this fact many times over across the globe. We thank the editing
office for their excellent support to realize this herculean achievement to collect and publish the cutting
edge articles in this issue.
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